Abstract
SummaryWe address the problem of dimension reduction for time series of functional data (Xt:t∈Z). Such functional time series frequently arise, for example, when a continuous time process is segmented into some smaller natural units, such as days. Then each X t represents one intraday curve. We argue that functional principal component analysis, though a key technique in the field and a benchmark for any competitor, does not provide an adequate dimension reduction in a time series setting. Functional principal component analysis indeed is a static procedure which ignores the essential information that is provided by the serial dependence structure of the functional data under study. Therefore, inspired by Brillinger's theory of dynamic principal components, we propose a dynamic version of functional principal component analysis which is based on a frequency domain approach. By means of a simulation study and an empirical illustration, we show the considerable improvement that the dynamic approach entails when compared with the usual static procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.