Abstract
AbstractIn seismology, the rupture mechanisms of an earthquake, a glacier stick‐slip and a landslide are not directly observed, but inferred from surface measurements. In contrast, laboratory experiments can illuminate near field effects. The near field reflects the rupture mechanism but is highly attenuated in the case of real‐world surface data. We directly image the elastic wave‐field of a nucleating rupture non‐invasively in its near‐field with ultrasound speckle correlation. Our imaging yields the particle velocity of the full shear wave field at the source location and inside the 3D frictional body. We experimentally show that a strong bimaterial contrast, as encountered in environmental seismology, yields a unidirectional or linear force mechanism for pre‐rupture microslips and decelerating supershear ruptures. A weak contrast, characteristic for earthquakes, generates a double‐couple source mechanism for sub‐Rayleigh ruptures, sometimes preceded by slow deformation at the interface. This deformation is reproduced by the NF of a unidirectional force.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.