Abstract
The dynamic thermo-oxidative degradation of expandable graphite (EG)-based intumescent halogen-free flame retardant (HFFR) LLDPE blends in the condensed phase at 300 or 400°C has been studied in situ by real time Fourier transform infrared spectroscopy. The kinetic characteristics and dynamic changes of various kinds of pyrolysis products during the thermo-oxidative degradation were examined extensively for several LLDPE/EG blends with different HFFR additives, such as the phosphorus–nitrogen compound NP28, ammonium polyphosphate (APP), red phosphorus (RP), and zinc borate (ZB). It has been found (i) that the dynamic monitoring of the LLDPE/EG/HFFR blends during the pyrolysis shows that the breakdown of LLDPE main chains and formation of various kinds of carbonyl products increase with increasing thermo-oxidation time and temperature; the latter have been identified as carboxylic acids, ketone, lactone and cyclic anhydrides; (ii) that the fast formation rate and high initial concentrations of P–O–P and P–O–C products in the phosphorus-containing HFFR systems have a crucial importance for decreasing the thermo-oxidative degradation rate of LLDPE efficiently (the NP28 system is the most efficient in the present study); and (iii) that the pyrolysis temperature has a significant effect on the efficiency of flame retardants, which requires the LLDPE/EG/HFFR formulation should be optimized at certain temperature range in order to form compact intumescent charred layers immediately at the beginning of the thermo-oxidative degradation of the LLDPE blends.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.