Abstract
Dynamic rigid indentation of a linearly elastic half-plane in the presence of Coulomb friction is studied in this paper. A rigid punch, which is either wedge- or parabolic-shaped, is rapidly driven into the deformable body so that stress waves are generated. The contact region is assumed to extend at a constant sub-Rayleigh speed (this situation can be achieved by conveniently specifying the kinetic and geometric characteristics of indentor), whereas, due to symmetry, friction acts in opposing directions on opposite sides of the indentor. As the present exact analysis shows, this sign reversal of the tangential traction along the half-plane surface creates an extra stress-singularity at the changeover point of the boundary conditions (due to symmetry, this point here coincides with the point where the indentor apex makes contact with the half-plane surface). The study exploits the problem's self-similarity by utilizing homogeneous-function techniques previously used by L.M. Brock, along with the Riemann-Hilbert problem analysis. Representative numerical results are given for the wedge indentation case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.