Abstract
AbstractThe combination of scanning friction force microscopy (SFFM) and lock‐in techniques leads to dynamic SFFM (DSFFM) and provides great advantages in friction force studies with sub‐micrometre resolution. In this paper are presented measurements on thin adsorbed organic films on polymers (polymer blend of 75% poly(allylaminehydrochloride) (PAA) and 25% poly(diallyl‐dimethylammonium chloride) (PDDAC)) and on mica (as a reference). The amplitude and phase response as a function of the excitation amplitude can be explained on hard surfaces by a simple static and dynamic friction model. This model allows us further to distinguish static friction forces and kinetic friction forces in a quantitative way. Furthermore, we demonstrate the use of these spectra to determine the correct modulation amplitude of the excitation to achieve the optimal friction contrasts directly. Polymer data suggest that the viscoelastic shear flow under the atomic force microscope (AFM) tip is responsible for the shape of the phase and amplitude spectrum. Lastly, we demonstrate that DSFFM is a useful technique for surface characterisation in situations where SFFM may not be adequate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.