Abstract

This paper focuses on investigating friction behavior in pre-sliding regime and developing a new mathematical model of friction for fluid power actuators. Using pneumatic cylinders with different sizes, an experimental setup is built to measure friction force-displacement characteristics in presliding regime under various conditions of pressures in the cylinder chambers. A new mathematical model of friction for the pneumatic cylinders is proposed by incorporating a hysteresis function into the new modified LuGre model. The experimental results show that when the pressures are varied, friction of the pneumatic cylinders in pre-sliding regime is represented by behavior of a nonlinear spring. In addition, hysteresis behavior with nonlocal memory is obtained in the friction forcedisplacement characteristics and that the size of the hysteresis loop is increased with increasing pressures in the cylinder chambers. The simulation results show that the new friction model can accurately simulate the friction behavior of the pneumatic cylinders in pre-sliding regime as well as sliding regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.