Abstract

We describe the design, analysis, and performance of an on--line algorithm to dynamically control the frequency/voltage of a Multiple Clock Domain (MCD) microarchitecture. The MCD microarchitecture allows the frequency/voltage of microprocessor regions to be adjusted independently and dynamically, allowing energy savings when the frequency of some regions can be reduced without significantly impacting performance.Our algorithm achieves on average a 19.0% reduction in Energy Per Instruction (EPI), a 3.2% increase in Cycles Per Instruction (CPI), a 16.7% improvement in Energy--Delay Product, and a Power Savings to Performance Degradation ratio of 4.6. Traditional frequency/voltage scaling techniques which apply reductions globally to a fully synchronous processor achieve a Power Savings to Performance Degradation ratio of only 2--3. Our Energy--Delay Product improvement is 85.5% of what has been achieved using an off--line algorithm. These results were achieved using a broad range of applications from the MediaBench, Olden, and Spec2000 benchmark suites using an algorithm we show to require minimal hardware resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.