Abstract

The fracture behavior of epoxy resin used as one of electrical insulation materials is generally brittle compared with that of metals. Therefore, when epoxy resin is used as a structural material, the effect of impact loading must be taken into consideration in design. In the present study, the dynamic fracture toughness of epoxy resin filled with SiO 2 particles has been evaluated both by the absorbed energy method and by the impact load obtained from the instrumented Charpy type impact test. Therefore, the absorbed energy has been analysed to evaluate the real fracture toughness. Moreover, the influence of inertial loading on the impact load must be also considered; therefore, the dynamic fracture toughness has been evaluated by the formula taking the inertial loading effect into consideration. Thus both fracture toughness values evaluated from absorbed energy and from impact load have been compared; as a result, a good agreement has been ascertained. It is common to perform impact test on specimens with blunt notches since they are easy to be prepared. However, variation of fracture toughness with notch root radius in the brittle material cannot be ignored. Therefore, the influence of notch root radius on the fracture toughness has been examined. As a result, it has been ascertained that the variation of fracture toughness with notch root radius follows the formula presented by Williams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call