Abstract

The dynamic fracture toughness of Cr and Mo steels with nickel contents of 0, 1.56, and 5.5 wt.% was evaluated and compared to a lightweight steel of composition Fe-30.40%Mn-8.83%Al-1.07%Si-0.90%C-0.53%Mo. Each steel was heat treated to a Rockwell C-scale hardness range of 36 to 38. The 4130, 4325, and HY130 steels were quench-hardened and tempered. The lightweight steel was solution treated, water quenched, and age hardened. In the hardness range of Rockwell C36 to C38, the lightweight steel, the 4325 steel, and the Al-killed and Ca-treated HY130 steel had similar dynamic fracture toughness values of 153, 153, and 165 kJ/m2, respectively. The 4130 steel had a much lower toughness of 94 kJ/m2. The lightweight Fe-Mn-Al-C alloy performed better at Rockwell C32, producing the highest dynamic fracture toughness of 376 kJ/m2. Toughness of the Cr and Mo steels was strongly dependent on deoxidation practice. Alloys treated with ferro-titanium showed a reduction in toughness, which was attributed to TiN particles and in one case eutectic Type II sulfides. Addition of misch metal to an aluminum and ferro-titanium treated HY130 steel eliminated the Type II sulfides and increased the dynamic fracture toughness from 58 to 88 kJ/m2. HY130 obtained the highest toughness (165 kJ/m2) when aluminum deoxidation was followed by calcium treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.