Abstract

In this paper, we present an efficient computational procedure to model dynamic fracture within the framework of the scaled boundary finite element method (SBFEM). A quadtree data structure is used to discretise the domain, and 2:1 ratio between the cells is maintained. This limits the number of patterns in the quadtree decomposition and allows for efficient computation of the system matrices. The regions close to the boundary are discretised with arbitrary sided polygons so as to facilitate accurate modelling of the curved boundaries. The stiffness and the mass matrix over all the cells are computed by the SBFEM. Moreover, the semi-analytical nature of the SBFEM enables accurate modelling of the asymptotic stress fields in the vicinity of the crack tip. An efficient remeshing algorithm that combines the quadtree decomposition with simple Boolean operations is proposed to model the crack propagation. The remeshing is restricted only to a small region in the vicinity of the crack tip. The efficiency and the convergence properties of the proposed framework are demonstrated with a few benchmark problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.