Abstract

We study the dynamic fracture of thin layers of suspensions of non-Brownian rigid particles. The impact of a projectile triggers a liquid-to-solid transition and a hole opens in the layer. We show that the occurrence of fracture and the spatial and dynamic features of the cracks depend mostly on the thickness of the layer and the particle volume fraction. In contrast, the properties of the fractured material seem independent of volume fraction. Finally, we measure the velocity of the crack tip, from which we estimate an effective value of the shear modulus of the fractured material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.