Abstract

In the present study, dynamic fracture experiments are performed on fully amorphous Liquidmetal-1 (LM-1), a Zr-based BMG, to better understand fracture initiation and propagation in notched specimens. Experiments are conducted on notched (110 μm notch radius) four-point bend specimens using an instrumented modified split-Hopkinson pressure bar apparatus. The results of these experiments suggest that the critical dynamic stress intensity factor achieved by the notched LM-1 specimens is ~110 MPa m1/2, which is similar to the fracture toughness determined from previous quasi-static fracture experiments. This insensitivity of the fracture toughness to crack tip loading rate suggests negligible loading-rate sensitivity on the dynamic fracture initiation toughness in LM-1. In situ high-speed camera images of the notched sample during the dynamic loading process show multiple fracture initiation attempts and subsequent arrests prior to catastrophic fracture initiation. Controlled stress wave loading experiments designed to induce sub-critical levels of damage in the notched specimens show extensive deformation banding extending 150 to 200 μm outward from the notch. The deformation bands, nominally perpendicular to each other, run along the direction of the notch and perpendicular to it. They are consistent with slip-line fields in notched samples of elastic perfectly plastic materials. Subsequent loading of the damaged specimen again shows several attempts at crack initiation followed by blunting; the initial sub-critical damage in the region around the notch is understood to increase the energy required for catastrophic specimen failure and is consistent with an increase in the effective notch radius due to preexisting damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call