Abstract
Dynamic fracture initiation and propagation in 4340 steel was investigated experimentally using the optical method of reflected caustics combined with high speed photography. A new crack propagation testing configuration consisting of a three point bend specimen loaded in a drop weight tower was used. It was found that prior to crack initiation the stress intensity factor time record calculated using the dynamic tup load and a static formula disagrees with the actual stress intensity factor measured by caustics. During crack propagation, the crack tip velocity and stress intensity factor time records varied smoothly and repeatably allowing for a straightforward interpretation of the data. The experiments show that for the particular heat treatment of 4340 steel used, the dynamic fracture propagation toughness depends on crack tip velocity through a relation that is a material property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.