Abstract

Dynamic fracture behavior of syntactic foams made of thin-walled microballoons dispersed in epoxy matrix is studied. Monotonically decreasing dynamic Young's modulus with increasing volume fraction of microballoons is observed using ultrasonic pulse-echo and density measurements. The results are also in good agreement with the Hashin–Shtrikman lower-bound predictions for elastic porous solids. Dynamic crack initiation toughness and crack growth behaviors are examined using instrumented drop-tower tests and optical measurements. Crack initiation toughness shows a linear relationship with Young's modulus over the entire range of volume fraction of microballoons studied. A proposed model based on simple extension of micromechanics prediction agrees well with the measurements. The optical method of coherent gradient sensing (CGS) has been used along with high-speed photography to record crack tip deformation histories in syntactic foam samples subjected to impact loading. Pre- and post-crack initiation events have been successfully captured and apparent dynamic stress intensity factor histories are extracted from the interferograms. Results suggest increasing crack speeds with volume fraction of microballoons. No significant dependence of dynamic fracture toughness on crack speed in any of the volume fractions is observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call