Abstract

A coupled thermoelastic radial integration boundary element method is applied to analyze the dynamic fracture mechanics of functionally graded materials (FGMs) subjected to the thermal shock loadings. The dynamic stress intensity factor (DSIF) of the crack tip is defined by the crack open displacement (COD) near the crack tip. The effects of material gradating direction versus crack direction and the coupling effects on the stress intensity factor are studied for two- and three-dimensional crack structures. The results demonstrate that the present method is very accuracy and efficiency to analyze the dynamic fracture mechanics for the cracked FGMs. The research also provides a theoretical basis for engineering design, and can extend the application range of the boundary element method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.