Abstract

The transient response of an interfacial crack between two functionally graded piezoelectric strips was investigated. The layered functionally graded piezoelectric material (FGPM) was subjected to uniform anti-plane mechanical and in-plane electric displacement impacts on the upper and lower free surfaces. An integral transform, Cauchy singular integral equation, and Chebyshev polynomial expansions were applied to obtain stress intensity factors and energy density factors in the Laplace transform domain. The Durbin method was then used to implement numerical inversion. The accuracy of the numerical results was examined, and superior parameters for Durbin inversion were suggested. The results show that the functionally graded parameters of the two-layered FGPM can either increase or decrease the value of the dynamic stress intensity factor and the dynamic energy density factor, thereby retarding or promoting the propagation of interfacial cracks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.