Abstract
The purpose of this work is to investigate the dynamic fracture properties of glassy polycarbonate (PC) with different aging times. The optical method of caustics is adopted in which the shadow spot patterns are recorded by a high speed camera during the dynamic fracture process. Then, the dynamic crack propagation, the stress intensity factor (SIF) and the dynamic fracture toughness of aged PC are obtained through an analysis of the characteristic size of caustic pattern. Moreover, by combining with the investigation of the fracture surface and the energy release rate analysis, the influence of aging time on the dynamic fracture behavior is discussed. Results show that the dynamic fracture toughness and critical energy release rate of PC decreases with aging time for short aging times, whereas they have little change or even increase for longer aging times. Therefore, aging modifies the mechanical properties especially the dynamic fracture properties of PC nonlinearly, not linearly as generally thought of.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.