Abstract

The dynamics of a cloud of ultra-cold two-level atoms is studied at off-resonant laser driving to a Rydberg state. We find that resonant excitation channels lead to strongly peaked spatial correlations associated with the buildup of asymmetric excitation structures. These aggregates can extend over the entire ensemble volume, but are in general not localized relative to the system boundaries. The characteristic distances between neighboring excitations depend on the laser detuning and on the interaction potential. These properties lead to characteristic features in the spatial excitation density, the Mandel $Q$ parameter, and the total number of excitations. As an application an implementation of the three-atom CSWAP or Fredkin gate with Rydberg atoms is discussed. The gate not only exploits the Rydberg blockade, but also utilizes the special features of an asymmetric geometric arrangement of the three atoms. We show that continuous-wave off-resonant laser driving is sufficient to create the required spatial arrangement of atoms out of a homogeneous cloud.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.