Abstract

BackgroundThe force-velocity-power (FVP) profile is used to describe dynamic force production capacities, which is of great interest in training high performance athletes. However, FVP may serve a new additional tool for cardiac rehabilitation (CR) of coronary artery disease (CAD) patients. The aim of this study was to compare the FVP profile between two populations: CAD patients vs. healthy participants (HP).MethodsTwenty-four CAD patients (55.8 ± 7.1 y) and 24 HP (52.4 ± 14.8 y) performed two sprints of 8 s on a Monark cycle ergometer with a resistance corresponding to 0.4 N/kg × body mass for men and 0.3 N/kg × body mass for women. The theoretical maximal force (F0) and velocity (V0), the slope of the force-velocity relationship (Sfv) and the maximal mechanical power output (Pmax) were determined.ResultsThe Pmax (CAD: 6.86 ± 2.26 W.kg–1 vs. HP: 9.78 ± 4.08 W.kg–1, p = 0.003), V0 (CAD: 5.10 ± 0.82 m.s–1 vs. HP: 5.79 ± 0.97 m.s–1, p = 0.010), and F0 (CAD: 1.35 ± 0.38 N.kg–1 vs. HP: 1.65 ± 0.51 N.kg–1, p = 0.039) were significantly higher in HP than in CAD. No significant difference appeared in Sfv (CAD: −0.27 ± 0.07 N.kg–1.m.s–1 vs. HS: −0.28 ± 0.07 N.kg–1.m.s–1, p = 0.541).ConclusionThe lower maximal power in CAD patients was related to both a lower V0 and F0. Physical inactivity, sedentary time and high cardiovascular disease (CVD) risk may explain this difference of force production at both high and low velocities between the two groups.

Highlights

  • After an acute coronary syndrome, a cardiac rehabilitation (CR) program is essential to restore or increase physical capacities and reduces cardiovascular disease (CVD) risk (Pavy et al, 2012; Iliou et al, 2015; Price et al, 2016)

  • Maximal power capacities depend on force production abilities over the entire spectrum of contraction velocities, which can be well described by the force-velocity (FV) relationship (Morin and Samozino, 2016)

  • Coronary artery disease patients volunteered to participate in this study at the beginning of the CR

Read more

Summary

Introduction

After an acute coronary syndrome, a cardiac rehabilitation (CR) program is essential to restore or increase physical capacities and reduces cardiovascular disease (CVD) risk (Pavy et al, 2012; Iliou et al, 2015; Price et al, 2016). Maximal power capacities depend on force production abilities over the entire spectrum of contraction velocities, which can be well described by the force-velocity (FV) relationship (Morin and Samozino, 2016). The orientation of this FV relationship toward rather maximal force at low velocities (i.e., force capacity) or force at high velocities (i.e., velocity capacity) is well characterized by its slope, which refers to the FV profile (Giroux et al, 2016). The aim of this study was to compare the FVP profile between two populations: CAD patients vs. healthy participants (HP)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.