Abstract

In this paper, we review some of the most important results obtained with our low-temperature force microscope operated in ultrahigh vacuum. In particular, we stress the resolution capabilities on the atomic scale. After describing some recent modifications of our earlier published setup, we first compare quasi-atomic resolution in the contact mode with true-atomic resolution in the non-contact mode on graphite. On xenon, we demonstrate that weak Van der Waals interactions are sufficient to achieve atomic resolution. Thereafter, atomic scale contrast with ferromagnetic tips on nickel oxide, an insulating antiferromagnet, is discussed with respect to recent theoretical calculations regarding the detection of exchange forces. Finally, tip-induced relaxation is visualized by imaging a point defect on indium arsenide at different tip–sample distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call