Abstract
An active microlens device is demonstrated by using a stacked layer structure of UV curable polymer, liquid crystalline polymer (LCP) and a liquid crystal (LC). The incident linearly polarized light is focused after passing through the combined refractive type microlens array system of UV curable polymer and LCP. Because used LCP shows highly birefringent macroscopic property from the well-ordered molecular structure, the additional polarization state control layer was inserted to modulate the dynamic focusing characteristics of the device. From the additional twisted LC layer's electro-optic response, we obtained good focal switching characteristics of microlens array with a small operation voltage application. This enhanced dynamic focusing characteristic of device was originated from the separate operation of polymer lens structure's beam focusing and twisted LC layer's polarization control ability. The measured focal length was well matched to the calculated one. This proposed LC microlens array is expected to play a critical role in the various real photonic components such as highly reliable optical switch, beam modulator and key device for 3-D imaging system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.