Abstract
This paper presents an adaptation of the flying ant colony optimization (FACO) algorithm to solve the traveling salesman problem (TSP). This new modification is called dynamic flying ant colony optimization (DFACO). FACO was originally proposed to solve the quality of service (QoS)-aware web service selection problem. Many researchers have addressed the TSP, but most solutions could not avoid the stagnation problem. In FACO, a flying ant deposits a pheromone by injecting it from a distance; therefore, not only the nodes on the path but also the neighboring nodes receive the pheromone. The amount of pheromone a neighboring node receives is inversely proportional to the distance between it and the node on the path. In this work, we modified the FACO algorithm to make it suitable for TSP in several ways. For example, the number of neighboring nodes that received pheromones varied depending on the quality of the solution compared to the rest of the solutions. This helped to balance the exploration and exploitation strategies. We also embedded the 3-Opt algorithm to improve the solution by mitigating the effect of the stagnation problem. Moreover, the colony contained a combination of regular and flying ants. These modifications aim to help the DFACO algorithm obtain better solutions in less processing time and avoid getting stuck in local minima. This work compared DFACO with (1) ACO and five different methods using 24 TSP datasets and (2) parallel ACO (PACO)-3Opt using 22 TSP datasets. The empirical results showed that DFACO achieved the best results compared with ACO and the five different methods for most of the datasets (23 out of 24) in terms of the quality of the solutions. Further, it achieved better results compared with PACO-3Opt for most of the datasets (20 out of 21) in terms of solution quality and execution time.
Highlights
The traveling salesman problem (TSP) [1] involves finding the shortest tour distance for a salesperson who wants to visit each city in a group of fully connected cities exactly once
ant colony optimization (ACO) was inspired by the way real ants forage for food
We compared dynamic flying ant colony optimization (DFACO) combined with the 3-Opt algorithm with ACO combined with the 3-Opt algorithm using 24 datasets
Summary
The traveling salesman problem (TSP) [1] involves finding the shortest tour distance for a salesperson who wants to visit each city in a group of fully connected cities exactly once. A good solution to the TSP problem can be considered an efficient diffusion method for reducing the transferring cost. Many methods, including heuristic or hybrid, have been proposed for solving the TSP, but most of them were unable to avoid the stagnation problem, or they may have obtained good solutions but took a long execution time to do so [7]. The main contributions of this work on the flying ACO (FACO) algorithm are as follows:. (1) proposing a dynamic neighboring selection mechanism to balance between exploration and exploitation, (2) reducing the execution time of FACO by making flying ants equal to half the ants, and (3) adapting the flying process to work with the TSP problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.