Abstract

Rods impacting a rigid target at velocities sufficient to produce several percent axial strain are found to buckle plastically with a fairly reproducible wavelength. This phenomenon is investigated for materials which exhibit strain-hardening, a property which is crucial to the theory. The buckling motion is treated as a perturbation of the motion associated with the axial compression. It is assumed that the axial strain rate dominates the extensional strain rate due to bending, so that no strain-rate reversal occurs until after the buckling is well developed. Elastic deformations are neglected, and the material is taken to follow a linear strain-hardening law. It is found that the predicted wavelength and buckling time are in reasonable agreement with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.