Abstract

Achieving mass personalization presents significant challenges in performance and adaptability when solving dynamic flexible job-shop scheduling problems (DFJSP). Previous studies have struggled to achieve high performance in variable contexts. To tackle this challenge, this paper introduces a novel scheduling strategy founded on heterogeneous multi-agent reinforcement learning. This strategy facilitates centralized optimization and decentralized decision-making through collaboration among job and machine agents while employing historical experiences to support data-driven learning. The DFJSP with transportation time is initially formulated as heterogeneous multi-agent partial observation Markov Decision Processes. This formulation outlines the interactions between decision-making agents and the environment, incorporating a reward-shaping mechanism aimed at organizing job and machine agents to minimize the weighted tardiness of dynamic jobs. Then, we develop a dueling double deep Q-network algorithm incorporating the reward-shaping mechanism to ascertain the optimal strategies for machine allocation and job sequencing in DFJSP. This approach addresses the sparse reward issue and accelerates the learning process. Finally, the efficiency of the proposed method is verified and validated through numerical experiments, which demonstrate its superiority in reducing the weighted tardiness of dynamic jobs when compared to state-of-the-art baselines. The proposed method exhibits remarkable adaptability in encountering new scenarios, underscoring the benefits of adopting a heterogeneous multi-agent reinforcement learning-based scheduling approach in navigating dynamic and flexible challenges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.