Abstract

The flexibility of HIV-1 protease flaps is known to be essential for the enzymatic activity. Here we attempt to capture a multitude of conformations of the free and substrate-bound HIV-1 protease that differ drastically in their flap arrangements. The substrate binding process suggests the opening of active site gate in conjunction with a reversal of flap tip ordering, from the native semiopen state. The reversed-flap, open-gated enzyme readily transforms to a closed conformation after proper placement of the substrate into the binding cleft. After substrate processing, the closed state protease which possessed opposite flap ordering relative to the semiopen state, encounters another flap reversal via a second open conformation that facilitates the evolution of native semiopen state of correct flap ordering. The complicated transitional pathway, comprising of many high and low energy states, is explored by combining standard and activated molecular dynamics (MD) simulation techniques. The study not only complements the existing findings from X-ray, NMR, EPR, and MD studies but also provides a wealth of detailed information that could help the structure-based drug design process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.