Abstract

We present a general dynamic finite-size scaling theory for the quantum dynamics after an abrupt quench, at both continuous and first-order quantum transitions. For continuous transitions, the scaling laws are naturally ruled by the critical exponents and the renormalization-group dimension of the perturbation at the transition. In the case of first-order transitions, it is possible to recover a universal scaling behavior, which is controlled by the size behavior of the energy gap between the lowest-energy levels. We discuss these findings in the framework of the paradigmatic quantum Ising ring, and support the dynamic scaling laws by numerical evidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.