Abstract

This paper introduces a dynamic finite element model for calculating iron loss in ferromagnetic non-oriented grain laminations under pulse-width modulation (PWM) excitation. The proposed methodology accounts for static hysteresis, classical eddy currents and anomalous losses and has been validated by measurements in Epstein device in different cases of PWM voltage waveforms. The model is based on a particular 2-D finite-element technique by using standard static iron lamination characteristics and offers sufficient accuracy in all studied cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.