Abstract

Shot peening is one of the surface treatment processes usually used for the improvement of fatigue strength of metallic parts by inducing residual stress field in them. The evaluation of shot peening parameters experimentally is not only very complex but costly as well. An attractive alternative is the explicit dynamics finite element (FE) analysis having the capability of accurately envisaging the shot peening process parameters using a suitable material’s constitutive model and numerical technique. In this study, ANSYS/LS-DYNA software was used to simulate the impact of steel shots of various sizes on 2618-T61 aluminium alloy plate described with strain rate dependent elasto-plastic material model. The impacts were carried out at various incident velocities. The effect of shot velocity and size on the induced compressive residual stress and plastic deformation were investigated. The results demonstrated that increasing the shot velocity and size yielded in an increase in plastic deformation of the aluminium target. However, as observed, the effect of shot velocity and size was small in magnitude on the target's subsurface compressive residual stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.