Abstract

We propose a dynamic filtering strategy with large sampling field for ConvNets (LS-DFN), where the position-specific kernels learn from not only the identical position but also multiple sampled neighbour regions. During sampling, residual learning is introduced to ease training and an attention mechanism is applied to fuse features from different samples. Such multiple samples enlarge the kernels receptive fields significantly without requiring more parameters. While LS-DFN inherits the advantages of DFN [5], namely avoiding feature map blurring by positionwise kernels while keeping translation invariance, it also efficiently alleviates the overfitting issue caused by much more parameters than normal CNNs. Our model is efficient and can be trained end-to-end via standard back-propagation. We demonstrate the merits of our LS-DFN on both sparse and dense prediction tasks involving object detection, semantic segmentation and flow estimation. Our results show LS-DFN enjoys stronger recognition abilities in object detection and semantic segmentation tasks on VOC benchmark [8] and sharper responses in flow estimation on FlyingChairs dataset [6] compared to strong baselines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.