Abstract
As one of the inherited displacement excitation sources which are related to the gear vibration and noise problems, gear transmission error always consists of two parts: gear tooth geometric error and tooth elastic deformation under transmitted load. The gear tooth geometric errors were directly employed as the displacement excitations in previous papers, which are not accurate. In this paper, a new method is developed to transform the gear tooth errors (TEs) to be the appropriate dynamic excitations through the mesh stiffness and the unloaded static transmission error (USTE), where the obtained displacement excitation curves, namely the USTE curves, are very different from the TE curves. Incorporation of the proposed model into the dynamic model of a planetary gear train enables the investigation of the TE effect on the dynamic excitations and vibrations. Two groups of TEs with different amplitudes are employed in the case studies. The results verify that the micro-scale TEs influence not only the dynamic displacement excitation, but also the total mesh stiffness and the planetary gear vibrations greatly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.