Abstract

This paper deals with detailed features of bubble dynamics near a solid boundary. The cavitation bubble was created by using a Q-switched Nd: YAG laser pulse and observed using a high-speed camera (up to 100,000 frames per second). A hydrophone system was employed to monitor the acoustic signals generated by the transient pressure impulses and estimate the bubble oscillation periods. Experimental observations were carried out for bubbles with various maximum expanded radius Rmax (between 1.0mm and 1.6mm) and stand-off distances, ds (defined as the distance between the solid boundary and the bubble center at inception) of 0.4⩽γ⩽3.0, and γ=ds/Rmax. The existence of a solid boundary created asymmetry in the flow field and forced the bubble to collapse non-spherically, which finally brought forth the jet impact phenomenon. The dimensionless first and second oscillation periods were dependent on γ. A series of expansion and collapse of the bubble with cascading loss of energy were observed after the bubble had been generated. This study revealed that most bubbles lost about two-thirds of the total energy from the first maximum expansion to the second maximum expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call