Abstract

Reliability analysis of fault-tolerant computer systems for critical applications is complicated by several factors. Systems designed to achieve high levels of reliability frequently employ high levels of redundancy, dynamic redundancy management, and complex fault and error recovery techniques. This paper describes dynamic fault-tree modeling techniques for handling these difficulties. Three advanced fault-tolerant computer systems are described: a fault-tolerant parallel processor, a mission avionics system, and a fault-tolerant hypercube. Fault-tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that can solve those fault-tree models.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call