Abstract
The dynamic failure mode and energy-based identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Transform (HHT) marginal spectrum. The results show that variations in the peak values of marginal spectra can clearly indicate the process of dynamic damage development inside the model slope. The identification results of marginal spectra closely coincide with the monitoring results of slope face displacement in the test. When subjected to the earthquake excitation with 0.1 g and 0.2 g amplitudes, no seismic damage is observed in the model slope, while the peak values of marginal spectra increase linearly with increasing slope height. In the case of 0.3 g seismic excitation, dynamic damage occurs near the slope crest and some rock blocks fall off the slope crest. When the seismic excitation reaches 0.4 g, the dynamic damage inside the model slope extends to the part with relative height of 0.295-0.6, and minor horizontal cracks occur in the middle part of the model slope. When the seismic excitation reaches 0.6 g, the damage further extends to the slope toe, and the damage inside the model slope extends to the part with relative height below 0.295, and the upper part (near the relative height of 0.8) slides outwards. Longitudinal fissures appear in the slope face, which connect with horizontal cracks, the weak intercalated layers at middle slope height are extruded out and the slope crest breaks up. The marginal spectrum identification results demonstrate that the dynamic damage near the slope face is minor as compared with that inside the model slope. The dynamic failure mode of counter-bedding rock slope with weak intercalated layers is extrusion and sliding at the middle rock strata. The research results of this paper are meaningful for the further understanding of the dynamic failure mode of counter-bedding rock slope with weak intercalated layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.