Abstract

In this study, the air blast response of the concrete dams including dam-reservoir interaction and acoustic cavitation in the reservoir is investigated. The finite element (FE) developed code are used to build three-dimensional (3D) finite element models of concrete dams. A fully coupled Euler-Lagrange formulation has been adopted herein. A previous developed model including the strain rate effects is employed to model the concrete material behavior subjected to blast loading. In addition, a one-fluid cavitating model is employed for the simulation of acoustic cavitation in the fluid domain. A parametric study is conducted to evaluate the effects of the air blast loading on the response of concrete dam systems. Hence, the analyses are performed for different heights of dam and different values of the charge distance from the charge center. Numerical results revealed that 1) concrete arch dams are more vulnerable to air blast loading than concrete gravity dams; 2) reservoir has mitigation effect on the response of concrete dams; 3) acoustic cavitation intensify crest displacement of concrete dams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.