Abstract

Location decisions are frequently subject to dynamic aspects such as changes in customer demand. Often, flexibility regarding the geographic location of facilities, as well as their capacities, is the only solution to such issues. Even when demand can be forecast, finding the optimal schedule for the deployment and dynamic adjustment of capacities remains a challenge, especially when the cost structure for these adjustments is complex. In this paper, we introduce a unifying model that generalizes existing formulations for several dynamic facility location problems and provides stronger linear programming relaxations than the specialized formulations. In addition, the model can address facility location problems where the costs for capacity changes are defined for all pairs of capacity levels. To the best of our knowledge, this problem has not been addressed in the literature. We apply our model to special cases of the problem with capacity expansion and reduction or temporary facility closing and reopening. We prove dominance relationships between our formulation and existing models for the special cases. Computational experiments on a large set of randomly generated instances with up to 100 facility locations and 1,000 customers show that our model can obtain optimal solutions in shorter computing times than the existing specialized formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.