Abstract
<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> This paper describes a probabilistic framework for faithful reproduction of dynamic facial expressions on a synthetic face model with MPEG-4 facial animation parameters (FAPs) while achieving very low bitrate in data transmission. The framework consists of a coupled Bayesian network (BN) to unify the facial expression analysis and synthesis into one coherent structure. At the analysis end, we cast the FAPs and facial action coding system (FACS) into a dynamic Bayesian network (DBN) to account for uncertainties in FAP extraction and to model the dynamic evolution of facial expressions. At the synthesizer, a static BN reconstructs the FAPs and their intensity. The two BNs are connected statically through a data stream link. Using the coupled BN to analyze and synthesize the dynamic facial expressions is the major novelty of this work. The novelty brings about several benefits. First, very low bitrate (9 bytes per frame) in data transmission can be achieved. Second, a facial expression is inferred through both spatial and temporal inference so that the perceptual quality of animation is less affected by the misdetected FAPs. Third, more realistic looking facial expressions can be reproduced by modelling the dynamics of human expressions. </para>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.