Abstract

In this article, a novel passivity-based control strategy is proposed for the exponentially stable tracking controller design of static synchronous compensator (STATCOM) system, which is a single input and single output. The STATCOM is not an input-affine system but a special port-controlled Hamiltonian system form. Hence, it is regularized by using a dynamic extension algorithm so that the proposed tracking control strategy is designed in an input–output linearization framework with a bounded solution to the driven zero dynamics equation. The proposed control strategy is proposed with consideration of the performance and stability of the input–output linearized dynamics. Simulation results show that the proposed control strategy improves the transient performance of the system compared to the previous results even in the lightly damped operating range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.