Abstract

The global prevalence of iron deficiency-induced "hidden hunger" highlights a critical health concern, underscoring the pressing need to improve iron nutrition through safe and efficient means, such as increasing iron intake from plant-based foods. Yellow Stripe-Like (YSL) genes play a crucial role in long-distance iron transport between source and sink tissues in plants. Here, we report on the analysis of YSL family genes in the common bean (Phaseolus vulgaris L.), an iron-rich legume crop. We identified 9 YSL genes in the common bean genome using BLAST and HMM methods. Gene duplication analysis revealed that PvYSL7a and PvYSL7b originated through tandem duplication events. Structural analysis noted an absence of conservative motifs in PvYSL3b and PvYSL7a, which led to distinct predicted 3D protein structures. Leveraging publicly available RNA-seq data from developing bean pods, the expression patterns of PvYSL genes alongside pod and seed development were analyzed. Notably, PvYSL7a and PvYSL7b, as well as PvYSL1a and PvYSL1b, exhibited diverged expression patterns in seeds, signifying their functional divergence in this tissue. Moreover, PvYSL3a and PvYSL3b exhibited divergent expression patterns in both pod walls and seeds during pod development, underscoring their distinct roles in facilitating iron transportation between pods and seeds. This study provides valuable insights into the gene regulatory basis of iron accumulation in bean pods and seeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call