Abstract
Neural cell adhesion molecule (NCAM) is associated with polysialic acid (PSA), and its function is highly dependent on the extent of polysialylation through the activity of two polysialyltransferases, sialyltransferase-X (STX) and polysialyltransferase (PST). PSA-NCAM plays an important role in synaptic plasticity in the hippocampus. The involvement of STX and PST during mnesic processes was assessed in the adult rat hippocampus. We investigated whether different levels in learning and memory using an olfactory associative task influenced STX and PST gene expression in the hippocampus using semiquantitative transcription-polymerase chain reaction. Then, NCAM polysialylation and cell proliferation were quantified in the dentate gyrus of a "Learning and Memory" group using immunohistochemistry. We found that only the expression level of PST mRNA increased with learning performance and returned to an initial level when learned associations were consolidated in long-term memory, while STX mRNA levels remained unchanged. This phenomenon was accompanied by an increase in PSA on NCAM but not by cell proliferation in the dentate gyrus. Our results suggest a different involvement for STX and PST in neural plasticity: while STX is probably involved in the proliferation of neural progenitor cells, PST could play a key role in synaptic plasticity of mature neural networks. The expression of the STX and PST genes could, therefore, be useful markers of neurobiological plasticity in the brain, allowing to follow chronological events in limbic and cortical structures related first to learning and memory processes (for PST) and, second, to adult neurogenesis processes (for STX).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.