Abstract

NeuroD is a basic helix-loop-helix (bHLH) transcription factor critical for determining neuronal cell fate and regulating withdrawal from the cell cycle. We showed previously that, in goldfish, neuroD is expressed in the rod photoreceptor lineage, and we inferred that neuroD is also expressed in a subset of amacrine cells and nascent cone photoreceptors. Here we extended that study by examining the temporal and spatial expression pattern of neuroD in the embryonic and larval zebrafish and by identifying the cell types that express this gene. NeuroD expression in the developing zebrafish retina is dynamic, spanning early retinogenesis and the maturation of cone photoreceptors. In early retinogenesis neuroD expression expands from a small patch in the ventronasal retina, through the remaining retinal neuroepithelium. As retinogenesis progresses, neuroD expression becomes restricted to amacrine cells, immature cones, and cells of rod and cone lineages. This expression achieves an adult pattern by 96 hours postfertilization (hpf), whereupon the temporal pattern of neuroD expression in central retina is spatially recapitulated at the germinative margin. The cellular pattern of expression suggests that neuroD regulates aspects of rod and cone genesis, but through separate cellular lineages. Furthermore, neuroD is coexpressed with the cone-rod-homeobox transcription factor (Crx) in putative cone progenitors and nascent cone photoreceptors, suggesting that, in the zebrafish retina, as in other vertebrate retinas, similar genetic cascades regulate photoreceptor genesis and maturation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.