Abstract

Skeletal muscle development is a complex process in which cell migration and adhesion play important roles. Because these cellular activities involve cell surface and extracellular matrix molecules, proteoglycan analysis was performed for developing chick skeletal muscle. Proteoglycans are macromolecular conjugates of protein and carbohydrate found in the extracellular matrix and at the cell surface. In developing muscle, both in vivo and in vitro, there is a development-related progression from synthesis of primarily large proteoglycans at earlier stages to mainly small proteoglycans at later stages. This progression was demonstrated by radiolabeling developing muscle and extracting and characterizing the proteoglycans. The large proteoglycans synthesized earlier in myogenesis have been identified as the large chondroitin sulfate proteoglycan, versican. Among the small proteoglycans synthesized at later stages is the small dermatan sulfate proteoglycan, decorin. Immunolocalization of these proteoglycans shows that versican is initially present in pericellular locations around developing myotubes, whereas decorin is observed in the epimysium early in development, and then its distribution gradually spreads to also include the perimysium and endomysium. Studies of regenerating muscle show that there is a recapitulation of the embryonic pattern of proteoglycan synthesis, which, coupled with the results from embryonic muscle development, suggests a role for versican in some early aspect of myogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.