Abstract

Drosophila segmentation is regulated by a complex network of transcription factors that include products of the pair-rule genes (PRGs). PRGs are expressed in early embryos in the primorida of alternate segmental units, establishing the repeated, segmental body plan of the fly. Despite detailed analysis of the regulatory logic among segmentation genes, the relationship between these genes and the morphological formation of segments is still poorly understood, since regulation of transcription factor expression is not sufficient to explain how segments actually form and are maintained. Cell surface proteins containing Leucine rich repeats (LRR) play a variety of roles in development, and those expressed in segmental patterns likely impact segment morphogenesis. Here we explore the relationships between the PRG network and segmentally expressed LRR-encoding (sLRR) genes. We examined expression of Toll2, Toll6, Toll7, Toll8 and tartan (trn) in wild type or PRG mutant embryos. Expression of each sLRR-encoding gene is dynamic, but each has a unique register along the anterior-posterior axis. The registers for different sLRRs are off-set from one another resulting in a continually changing set of overlapping expression patterns among the sLRR-encoding genes themselves and between the sLRR-encoding genes and the PRGs. Accordingly, each sLRR-encoding gene is regulated by a unique combination of PRGs. These findings suggest that one role of the PRG network is to promote segmentation by establishing a cell surface code: each row of cells in the two-segment-wide primordia expresses a unique combination of sLRRs, thereby translating regulatory information from the PRGs to direct segment morphogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call