Abstract

Epigenetic mechanisms play critical roles in oogenesis and early embryo development in mammals. One of these epigenetic mechanisms, DNA methylation is accomplished through the activities of DNA methyltransferases (DNMTs), which are responsible for adding a methyl group to the fifth carbon atom of the cytosine residues within cytosine-phosphate-guanine (CpG) and non-CpG dinuclotide sites. Five DNMT enzymes have been identified in mammals including DNMT1, DNMT2, DNMT3A, DNMT3B, and DNMT3L. They function in two different methylation processes: maintenance and de novo. For maintenance methylation, DNMT1 preferentially transfers methyl groups to the hemi-methylated DNA strands following DNA replication. However, for de novo methylation activities both DNMT3A and DNMT3B function in the methylation of the unmodified cytosine residues. Although DNMT3L indirectly contributes to de novo methylation process, DNMT2 enables the methylation of the cytosine 38 in the anticodon loop of aspartic acid transfer RNA and does not methylate DNA. In this review article, we have evaluated and discussed the existing published studies to characterize the spatial and temporal expression patterns of the DNMTs in mouse, bovine and human oocytes and early embryos. We have also reviewed the effects of invitro culture conditions (serum abundance and glucose concentration), aging, superovulation, vitrification, and somatic cell nuclear transfer technology on the dynamics of DNMTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.