Abstract

We previously described a selective bile duct ligation model to elucidate the process of hepatic fibrogenesis in children with biliary atresia or intrahepatic biliary stenosis. Using this model, we identified changes in the expression of alpha smooth muscle actin (α-SMA) both in the obstructed parenchyma and in the hepatic parenchyma adjacent to the obstruction. However, the expression profiles of desmin and TGF-β1, molecules known to be involved in hepatic fibrogenesis, were unchanged when analyzed by semiquantitative polymerase chain reaction (RT-PCR). Thus, the molecular mechanisms involved in the modulation of liver fibrosis in this experimental model are not fully understood. This study aimed to evaluate the molecular changes in an experimental model of selective bile duct ligation and to compare the gene expression changes observed in RT-PCR and in real-time quantitative PCR (qRT‐PCR). Twenty-eight Wistar rats of both sexes and weaning age (21-23 days old) were used. The rats were separated into groups that were assessed 7 or 60 days after selective biliary duct ligation. The expression of desmin, α-SMA and TGF-β1 was examined in tissue from hepatic parenchyma with biliary obstruction (BO) and in hepatic parenchyma without biliary obstruction (WBO), using RT-PCR and qRT‐PCR. The results obtained in this study using these two methods were significantly different. The BO parenchyma had a more severe fibrogenic reaction, with increased α-SMA and TGF-β1 expression after 7 days. The WBO parenchyma presented a later, fibrotic response, with increased desmin expression 7 days after surgery and increased α-SMA 60 days after surgery. The qRT‐PCR technique was more sensitive to expression changes than the semiquantitative method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.