Abstract

BackgroundDetermining the mechanisms involved in the immune-pathogenesis of the tropical liver fluke, Fasciola gigantica, is crucial to the development of any effective therapeutic intervention. Here, we examined the differential gene expression of cytokines and transcription factors in the liver of F. gigantica-infected buffaloes, over the course of infection.MethodsWater buffaloes (swamp type) were infected orally with 500 F. gigantica encysted metacercariae. Liver tissue samples were collected 3, 10, 28, 42, 70 and 98 days post-infection (dpi). Levels of gene expression of nine cytokines (IFN-γ, TGF-β, IL-1β, IL-4, IL-6, IL-10, IL-12B, IL-13 and IL-17A) and four transcription factors (T-bet, GATA-3, Foxp3 and ROR-γτ) were determined using quantitative real-time PCR (qRT-PCR). We evaluated any correlation between gene expression of these immune-regulatory factors and the severity of liver pathology.ResultsHistopathological examination revealed that cellular infiltration, hemorrhage and fibrosis without calcification in the liver parenchyma of infected buffaloes, increased over the course of infection. This progressive pathology was attributed to dysregulated and excessive inflammatory responses induced by infection. The early infection phase (3–10 dpi) was marked by a generalized immunosuppression and elevated TGF-β expression in order to facilitate parasite colonization. A mixed Th1/Th2 immune response was dominant from 28 to 70 dpi, to promote parasite survival while minimizing host tissue damage. During late infection (98 dpi), the response was biased towards Th1/Treg in order to inhibit the host’s Th2 protective response and promote chronic infection. Both IL-10 and IL-17A and the Th17/Treg balance, played key roles in mediating the inflammatory and immunoregulatory mechanisms in the liver during chronic fasciolosis.ConclusionsOur data showed distinct CD4+ T helper (Th) polarization and cytokine dysregulation in response to F. gigantica infection in water buffaloes over the course of infection. Characterizing the temporal expression profiles for host immune genes during infection should provide important information for defining how F. gigantica adapts and survives in the liver of buffaloes and how host immune responses influence F. gigantica pathogenicity.

Highlights

  • Determining the mechanisms involved in the immune-pathogenesis of the tropical liver fluke, Fasciola gigantica, is crucial to the development of any effective therapeutic intervention

  • The monitoring of Th17 and Regulatory T cell (Treg) cell offers a promising new perspective on the pathogenesis of F. gigantica infection and deserves further exploration. This is the first study to characterize the correlation between the expression of Th1, Th2, Th17, and Treg cytokines and transcription factors with liver pathology in buffaloes, during the course of experimental F. gigantica infection

  • The expression patterns for the examined genes indicated that there were periods of differential regulation during F. gigantica infection, which may suggest either a mechanism of immune evasion based on modulation of transcription or a mechanism used by host tissue to limit the infection and tissue damage

Read more

Summary

Introduction

Determining the mechanisms involved in the immune-pathogenesis of the tropical liver fluke, Fasciola gigantica, is crucial to the development of any effective therapeutic intervention. Fasciolosis is a zoonotic parasitic disease caused by infection with the digenetic trematode flukes of the genus Fasciola. While Fasciola hepatica is prevalent in temperate regions, F. gigantica is more widespread in Africa and Asia [1, 2]. Migration of these flukes inside the body of the host causes severe damage to the liver parenchyma and gall-bladder [3,4,5]. Infection of buffaloes with F. gigantica is common in southern China and other geographic regions of the world [6]. Effective and balanced local immunity is essential for detecting and controlling these hepatotropic parasites, and for limiting hepatic damage

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call