Abstract

The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations. When transactions are transmitted through the channels created by nodes, the nodes need to cooperate with each other. If one party refuses to do so, the channel is unstable. A stable channel is thus required. Because nodes may show uncooperative behavior, they may have a negative impact on the stability of such channels. In order to address this issue, this work proposes a dynamic evolutionary game model based on node behavior. This model considers various defense strategies' cost and attack success ratio under them. Nodes can dynamically adjust their strategies according to the behavior of attackers to achieve their effective defense. The equilibrium stability of the proposed model can be achieved. The proposed model can be applied to general channel networks. It is compared with two state-of-the-art blockchain channels: Lightning network and Spirit channels. The experimental results show that the proposed model can be used to improve a channel's stability and keep it in a good cooperative stable state. Thus its use enables a blockchain to enjoy higher transaction success ratio and lower transaction transmission delay than the use of its two peers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.