Abstract
The mitochondrial permeability transition pore complex (PTPC) is involved in the control of the mitochondrial membrane permeabilization during apoptosis, necrosis and autophagy. Indeed, the adenine nucleotide translocator (ANT) and the voltage-dependent anion channel (VDAC), two major components of PTPC, are the targets of a variety of proapoptotic inducers. Using co-immunoprecipitation and proteomic analysis, we identified some of the interacting partners of ANT in several normal tissues and human cancer cell lines. During chemotherapy-induced apoptosis, some of these interactions were constant (e.g. ANT-VDAC), whereas others changed strongly concomitantly with the dissipation of the mitochondrial transmembrane potential and until nuclear degradation occurred (e.g. Bax, Bcl-2, subunits of the respiratory chain, a subunit of the phosphatase PP2A, phospholipase PLC beta 4 and IP3 receptor). In addition, a glutathione-S-transferase (GST) interacts with ANT in normal tissue, in colon carcinoma cells and in vitro. This interaction is lost during apoptosis induction, suggesting that GST behaves as an endogenous repressor of PTPC and ANT pore opening. Thus, ANT is connected to mitochondrial proteins as well as to proteins from other organelles such as the endoplasmic reticulum forming a dynamic polyprotein complex. Changes within this ANT interactome coordinate the lethal response of cells to apoptosis induction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.