Abstract
Abstract The moods, feelings, and attitudes represented in a novel will resonate in the reader by activating similar sentiments. It is generally accepted that sentiment analysis can capture aspects of such moods, feelings, and attitudes and can be used to summarize a novel’s plot in a story arc. With the availability of a number of algorithms to automatically extract sentiment-based story arcs, new approaches for their utilization becomes pertinent. We propose to use nonlinear adaptive filtering and fractal analysis in order to analyze the narrative coherence and dynamic evolution of a novel. Using Never Let Me Go by Kazuo Ishiguro, the winner of the 2017 Nobel Prize for Literature as an illustrative example, we show that: (1) nonlinear adaptive filtering can extract a story arc that reflects the tragic trend of the novel; (2) the story arc displays persistent dynamics as measured by the Hurst exponent at short and medium timescales; (3) the plot’s dynamic evolution is reflected in the time-varying Hurst exponent. We argue that these findings are indicative of the potential that multifractal theory has for computational narratology and large-scale literary analysis. Specifically that the global Hurst exponent of a story arc is an index of narrative coherence that can identify bland, incoherent, and coherent narratives on a continuous scale. And, further, that the local time-varying Hurst exponent captures variation of a novel’s plot such that the extrema have specific narratological interpretations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.