Abstract

<b>Background and Objective:</b> The global SARS-CoV-2 pandemic highlights the importance of tracking virus evolution through genomic surveillance, especially concerning mutations in the SARS-CoV-2 spike protein, crucial for vaccine development. Despite global concern over variants, regions like West Sumatra, Indonesia, lack thorough genomic analysis, prompting this study to analyze S gene mutations across three pandemic waves in West Sumatra. <b>Materials and Methods:</b> Next-generation sequencing was conducted through the Illumina MiSeq instrument to leverage a dataset of 352 anonymized samples collected between March, 2020 and November, 2022 and rigorous analysis of S gene mutation using CLC Genomics Workbench<sup>®</sup> 21 version 21.0.3 were employed. Statistical analyses assessed mutation prevalence over time, exploring associations with clinical outcomes. <b>Results:</b> The findings revealed significant variability in mutation profiles across different variants. Notably, the Omicron variant (21K) exhibited a high mutation rate, suggesting enhanced immune evasion capabilities. Comparative analysis highlighted evolutionary trends, from early variants with fewer mutations to highly adapted forms like Delta (21I) and Omicron. The dynamic nature of SARS-CoV-2 evolution underscores the importance of continuous surveillance, rapid public health response and vaccine adaptation. <b>Conclusion:</b> This study contributes valuable insights into the virus's evolving landscape, emphasizing the need for ongoing research, global collaboration and adaptable vaccine strategies to manage the evolving threat of COVID-19 effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call