Abstract

This paper investigates the problem of fault estimation and sliding mode fault-tolerant control(FTC) for networked control systems with sensor faults under dynamic event-triggered scheme. First, the sensor faults are equivalent to virtual internal system faults in system by filtering, and dynamic event-triggered fault/state observer is designed to estimate the system state and fault at the same time. Therefore, a sliding mode surface under event-triggering is constructed considering system faults and network delay. By the Lyapunov-Krasovskii function, a novel design condition in the form of linear matrix inequality is obtained with H∞ performance to gain observer and controller parameters. In addition, a sliding mode FTC law is constructed to guarantee that the trajectories of system states can be arrived to the sliding surface in a finite time. Finally, two examples with simulation are given to verify the effectiveness of the theoretical method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.